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Abstract 

      In this paper, we present a numerical method for solving nonlinear Fredholm and 

Volterra integral equations of the second kind which is based on the use of Haar wavelets 

and collocation method. We use properties of Block Pulse Functions (BPF) for solving 

Volterra integral equation. Numerical examples show efficiency of the method. 

 

1. Introduction 

Integral equations of the Hammerstein type have been one of the most important 

domains of applications of the ideas and methods of nonlinear functional analysis and in 

particular of the theory of nonlinear operators of monotone type. Various applied 

problems arrising in mathematical physics, mechanics and control theory leads to 

multivalued analogs of the Hammerstein integral equations[15]. In recent years, many 

different basis functions have been used to solve and reduce integral equations to a system 

of algebraic equations [1-3], [7-10] and [12-13]. For numerical solution of integral 

equations quadrature formula methods and spline approximations are used. In the case of 

this method, systems of algebraic equations must be solved. For large matrices, this 

requires a huge number of arithmetic operators and a larg storage capacity. A lot of 

computing time is saved if we succeed in replacing the fully populated transform matrix 

with a sparse matrix. One possibility for this gives the wavelet method; the wavelet bases  
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lead to a sparse matrix representation since (i) the basis functions are usually orthogonal; 

(ii) most of the functions have a small interval of support. The aim of this paper is to 

present a numerical method for solving nonlinear Fredholm and Volterra integral 

equations of Hammerstein type using Haar wavelets defined as following: 

Definition: The Haar wavelet is the function defined on the real line R as: 

H(t)=  

now for n = 1, 2, . . . , write n = 2
j
 + k with j = 0, 1, . . . , and k = 0, 1, . . . , 2

j
-1 and 

define hn (t) =  H(2
j
t - k)|[0,1] . Also, define h0 (t) = 1 for all t. Here the integer 2

j
 , j = 0, 

1, . . . , indicates the level of the wavelet and k = 0, 1, . . . , 2
j
 - 1 is the translation 

parameter. It can be shown that the sequence  is a complete orthonormal system 

in L
2
 [0, 1] and for f  C [0, 1], the series  f, hn>hn converges uniformly to f [14], 

where < f, hn >=  

 

2. Function Approximation 

A function u(t) defined over the interval [0, 1) may be expanded as: 

u(t) =                                                    (1) 

with un =< u(t), hn (t) >. 

In practice, only the first k-term of (1) are considered, where k is a power of 2, that is, 

u(t) uk (t) =                                                      (2) 

with matrix form: 

u(t) uk (t)= u
t
h(t),                                                            (3) 

where, u = [u0 , u1 , . . . , uk-1 ]
t
 and h(t) = [h0 (t), h1 (t), . . . , hk-1(t)]

t
. Similarly, K(x, t)  

L
2
 [0, 1)

2
 may be approximated as: 

 

or in matrix form 

                                            (4) 

where K  and Kij =< hi (x), < K(x, t), hj (t) >>. 
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3.  Nonlinear integral equations 

Consider the following nonlinear integral equation of the second kind: 

u(t) =                                                  (5)  

where, K  L
2
 [0, 1)

2
 and g,h L

2
 [0, 1) are known functions and u(t) is the unknown 

function to be determined. We consider the problem when using a collocation method. By 

substituting (2) into (5) and evaluating the new equation at the collocation points tj   [0, 

1) we obtain: 

                           (6) 

for  j = 1, 2, . . . , k. In the iterative solution of this system, many integrals will need to be 

computed, which usually becomes quite expensive. In particular, the integral on the right 

side will need to re-evaluated with each new iterate. But if we define 

    W(t) = [t, u(t)]                                                                (7)  

from (5) we obtain 

(8) 

If we approximate  as: 

(9) 

where w = [w0 , w1 , . . . , wk-1 ]
t
 , the collocation method for (8) is 

                                                                                                                                        (10) 

the integral of the right side of (10) need be evaluated only once, since they are dependent 

only on the basis, not on the unknowns {un }. Many fewer integrals need be calculated to 

solve this system. In this paper, we consider nonlinear integral equations with degenerate 

kernel [2].  

3.1.  Nonlinear Fredholm integral equations of Hammerstein type 

Now consider the following nonlinear Fredholm integral equation of the second kind of 

Hammerstein type: 

                                                                                                                                      (11) 
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where, K  L
2
 [0, 1)

2
 and g,  L

2
 [0, 1) are known functions and u(t) is the unknown 

function to be determined. Now from equations (7) and (11) we have: 

                                                                                                                                           (12) 

If we approximate equation (12) by 

                                                                                                                                           (13) 

we have to approximate Wk (t) as (9). By approximating functions K(x, t) and W (t), as 

before, in the 

matrix form we have: 

                                                                                                                                       (14) 

                                                                                                                                        (15) 

by substituting the approximations (14) and (15) into (8) we obtain: 

 

(16) 

where we used the orthonormality of the sequence {hn } on [0, 1) that implies 

 where  is the identity matrix of order k. 

Evaluating (16) at the collocation points  

 (17) 

which is a nonlinear system of algebraic equations. Solving (17) gives column vector w. 

Therefore, from (9) we can approximate W (t) by Wk (t) and from (13) we get desired 

approximation uk (t) for u(t). 

3.2.  Nonlinear Volterra integral equations of Hammerstein type 

Now consider the nonlinear Volterra integral equation of the second kind of Hammerstein 

type: 

                                                                                                                                           (18) 

as before, we let 

(19) 

by substituting (19) into (18) we obtain: 
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                                                                                                                                         (20) 

substituting (20) into (19) leads to 

                                                                                                                                        (21) 

We approximate equation (20) by 

                                                                                                                                        (22) 

by substituting the approximations (14) and (15) into (21) we obtain: 

 

                                         (23) 

Where In section 4, we consider evaluation of A(t) at the 

collocation points tj using properties of Block-Pulse Functions (BPF). 

 

4. Evaluation of A(t) at the collocation points tj 

In this section, we present the Haar coefficient matrix H;  it is a k × k matrix with the 

elements 

                                                      H=  

where the points tj are the collocation points 

 

Also, define a k-set of Block-Pulse Functions (BPF) as: 

                                                                                                                                          (24) 

The functions Br (t) are disjoint and orthogonal. That is, 

                                                                                                                                       (25) 

 

                                                                                                                                        (26) 

It can be shown that h(t) = HB(t) [6], vector h(t) and matrix H are already introduced and 

B(t) =[B1 (t), . . . , Bk (t)]
t
 . Using (25) leads to 
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 , 

where,  is a k × k matrix with the elements 

 

Therefore we have 

 

 

                                           (27) 

By integrating (27) we obtain: 

 

 

                                                                                                                                           (28)  

where ,  

    From (24) we have                                                              

  implies that B1(t) =1 and Bi (t) = 0 for i = 2, . . . , k . 

   implies that B2 (t) = 1 and Bi (t) = 0 for i = 1, . . . , k and i  2. 

 

   implies that Bk (t) = 1 and Bi (t) = 0 for i = 1, . . . , k-1 . 

Therefore, 

and ni (t1) = 0 for i = 2, . . . , k . 

and ni (t2) = 0 for i = 3, . . . , k . 

 

  

Evaluating (28) at the collocation points tj leads to 
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, 

or in abstract form 

 

 

By evaluating (23) at the collocation points tj , j = 1, 2, . . . , k, we have 

                                               (29) 

Solving nonlinear system of algebraic equations (29) gives column vector w.  Therefore 

from (9) we can approximate W (t) by Wk (t) and from (22) we get desired 

approximation uk(t) for u(t). 

 

5. Numerical Examples 

Example  1 [9]: 

 

with exact solution u(x) = x. Now we explain the details for solving example 1 with k 

=16. We have 

k(x, t) = 2xt , g(x) =    and [t, u(t)] . From system (17) we have 

,                                          (30) 

for j = 1, 2,...,k, where  and entries 

of the matrix K are given by Kij =< hi (x), < K(x, t), hj (t) >>.  So, system (30) gives 

column vector w:  

w=[.7465741616, .1759828194, 0.4041735453e-1, 0.7412321740e-1, 0.7674107908e-2, 

0.2025990210e-1, 0.2630329292e-1, 0.2533820104e-1, 0.1387065386e-2, 

0.4007826334e-2, 0.6266570310e-2, 0.7983160604e-2, 0.9054739168e-2, 

0.9463819862e-2, 0.9270852644e-2, 0.8594532883e-2]
t
 . 
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Now by substituting     into (13) we obtain : 

 

                                                                 , 

that is desired approximation for u(x) over the interval [0,1). 

Example 2 [9]: 

 

with exact solution u(x) = e
x
 . 

Example 3 [9]: 

 

with exact solution u(x) =  

Example 4 [10]: 

                                                       , 

with exact solution u(x) = e
x
 . 

Example 5 [8]: 

 

with exact solution u(x) = cos x. 

Example 6 [5]: 

 

with exact solution u(x) = x. 

Example 7 [5]: 

 

with exact solution u(x) = e
x
 . 

Table 1 shows the computed error =   for the examples 1-7 with k = 16. 

 

Conclusion 

In present paper, Haar wavelets together with the collocation points are applied to 

solve the nonlinear Fredholm and Volterra integral equations of Hammerstein type. 
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Numerical examples show the accuracy of the method, therefore for better results, using 

a larger k is recommended. Evaluating Wk (t) at different points of the interval [0,1) 

shows that in the examples 1 and 3 where g is nonexponential, Wk (t) is a more accurate 

approximation of W (t), compared with the examples 2 and 4 whose g functions are 

exponential. In fact, when g is nonexponential, the vector w obtained as a solution to (17), 

is much more accurate than in the examples where g is exponential. As a result, uk(t) is a 

more accurate approximation of u(t).  

   Table 1 

t Example 

1 

Example 

2 

Example 

3 

Example 

4 

Example 

5 

Example 

6 

Example 

7 

.1 2E -7 8E - 3 4E - 7 1E - 3 3E - 5 5E - 4 1E - 3 

.2 5E - 7 9E - 3 9E - 7 3E - 3 1E - 4 4E - 4 1E - 3 

.3 7E - 7 1E - 2 1E - 6 5E - 3 3E - 4 4E - 4 2E - 3 

.4 1E - 6 1E - 2 1E - 6 7E - 3 8E - 4 6E - 4 3E - 3 

.5 1E - 6 1E - 2 2E - 6 9E - 3 1E - 3 3E - 4 3E - 3 

.6 1E - 6 1E - 2 2E - 6 1E - 2 2E - 3 7E - 4 8E - 3 

.7 1E - 6 1E - 2 3E - 6 1E - 2 2E - 3 7E - 4 2E - 2 

.8 2E - 6 1E - 2 3E - 6 1E - 2 1E - 3 9E - 4 7E - 2 

.9 2E - 6 1E - 2 4E - 6 1E - 2 9E - 3 1E - 3     1E - 1  
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